Contraction and organization of collagen gels by cells cultured from periodontal ligament, gingiva and bone suggest functional differences between cell types.
نویسندگان
چکیده
Monkey periodontal ligament fibroblasts (MPLF cells), human gingival fibroblasts (HGF cells), rat embryonic calvaria cells (REC cells), porcine periodontal ligament epithelial cells (PPLE cells) and rat osteosarcoma 17/2 cells (ROS cells) were incorporated into 3-dimensional collagen gels plated in 60 mm Petri dishes in order: first, to measure the capacity of these cell types to contract; second, to investigate cell-collagen and intercellular relationships during contraction; and third, to define the cellular contribution to tissue contraction in an in vitro system. Measurements at times up to 72 h on 3 ml gels containing 5 x 10(5) cells and with a collagen concentration of 1.20 mg/ml showed that MPLF cells contracted the gels at a significantly greater rate (P less than 0.001) than did the other cell types. In addition, contraction started sooner and was of greater extent than with the other cells. HGF cells contracted the gels more rapidly than REC and PPLE cells, while ROS cells caused no contraction. Several stages of gel compaction could be defined: (1) the attachment of cells to collagen; (2) cellular spreading within the collagen fibre matrix; (3) organization and alignment of collagen fibres by cell processes; (4) cell migration; (5) establishment of intercellular contacts; and (6) the development of a cellular reticular arrangement within the gel and the extension of this arrangement into a 3-dimensional, tissue-like, honeycomb network. Electron microscopic observations on 0.1 ml gels containing MPLF cells showed that, in the early contractile phase, numerous cell processes attached to or enclosed collagen fibrils. These processes contained microfilamentous material and few organelles. In compacted gels, the cells contained an increased amount of distended rough endoplasmic reticulum and Golgi membranes. Since MPLF cells have the capacity for vigorous contraction of the collagen gels and since they develop a reticular, 3-dimensional structure in compacted gels that is reminiscent of the relationship of periodontal ligament fibroblasts to collagen fibres in vivo, it is suggested that they could provide the major force necessary for tooth eruption in vivo. This system also provides a well-defined in vitro model to study the sequential stages that occur during contraction processes.
منابع مشابه
Canine Periodontal Stem Cells: Isolation, Differentiation Potential and Electronic Microscopic Characterization
Objective- Investigating of the isolation, culture, differentiation potential and electronic microscopic characterization of canine periodontal ligament stem cells (PDLSCs). Design- Experimental in vitro study Animals- Four intact, male, mongrel dogs, 8-10 months-old were selected to collect PDLSCs from their teeth. Procedures- The dogs were anesthetized and the first maxillary and mandibula...
متن کاملAgents with periodontal regenerative potential regulate cell-mediated collagen lattice contraction in vitro.
A variety of pharmaceutical agents has been proposed for use in periodontal therapy to inhibit loss of alveolar bone and to promote regeneration of tissues lost to disease. The purpose of this study was to determine the effects of such agents on periodontal cell-mediated gel contraction, an in vitro process considered representative of wound contraction and remodeling in vivo. Human gingival fi...
متن کاملAssociation between tension and orientation of periodontal ligament fibroblasts and exogenous collagen fibres in collagen gels in vitro.
The relationship between the development of tension in sheets of fibroblasts and the orientation of these cells and collagen fibres in collagen gels was examined. Cell-containing, three-dimensional collagen gels were established in agarose-coated Epon dies measuring 10 mm X 4 mm X 4 mm, to which pieces of demineralized tooth and bone had been attached at opposite ends. Contraction of the gel in...
متن کاملFunctional characteristics of gingival and periodontal ligament fibroblasts.
In periodontal surgery, healing after guided tissue regeneration (GTR) may be explained by differences in functional activities of gingival and periodontal ligament fibroblasts (GF and PDLF). Several studies in vitro have supported this hypothesis, but much remains to be defined. In the present work, gingival and periodontal ligament fibroblasts derived from five healthy subjects were isolated ...
متن کاملMatrix metalloproteinase inhibitors reduce collagen gel contraction and alpha-smooth muscle actin expression by periodontal ligament cells.
BACKGROUND AND OBJECTIVE Orthodontic tooth movement requires remodeling of the periodontal tissues. The matrix metalloproteinases (MMPs) degrade the extracellular matrix components of the periodontal ligament, while the tissue inhibitors of metalloproteinases (TIMPs) control their activity. Synthetic MMP inhibitors have been developed to inhibit MMP activity. In this study, periodontal ligament...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 50 شماره
صفحات -
تاریخ انتشار 1981